- #1

- 575

- 166

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- I
- Thread starter Swamp Thing
- Start date

- #1

- 575

- 166

- #2

- 17,340

- 7,212

The way you would expect it to, according to the Schrödinger equation for a free particle.

- #3

- 575

- 166

- #4

- 8,922

- 2,906

After turning off the potential, the wave function will evolve as a superposition of plane waves.

Write:

[itex]\psi(x,t=0) = \int dk e^{ikx} \tilde{\psi}(k)[/itex]

where [itex]\tilde{\psi}(k) = \frac{1}{2\pi} \int dx e^{-ikx} \psi(x,t=0)[/itex]

After the potential turns off, [itex]e^{ikx}[/itex] evolves into [itex]e^{i (kx - \omega t)}[/itex], where [itex]\omega = \frac{E_k}{\hbar} = \frac{\hbar k^2}{2m}[/itex]. So for [itex]t > 0[/itex],

[itex]\psi(x,t) = \int dk e^{ikx - \omega t} \tilde{\psi}(k)[/itex]

We can write this in another way:

[itex]\psi(x,t) = \int dx' \int dk e^{ikx - \omega t} \int dx' e^{-i k x'} \psi(x',t=0)[/itex]

[edit: added factor of [itex]\frac{1}{2\pi}[/itex]]

Now under the questionable assumption that we can swap the order of integration, we can also write:

[itex]\psi(x,t) = \int dx' \psi(x', t=0) \frac{1}{2\pi} \int dk e^{ik(x - x') - \omega t}[/itex]

If we define [itex]G(x', x, t) = \frac{1}{2\pi} \int dk e^{ik(x-x') - \omega t}[/itex], then we can write:

[itex]\psi(x,t) = \int dx' G(x', x, t) \psi(x',t=0)[/itex]

where [itex]G[/itex] is the "Green function" for the Schrodinger equation. This can be interpreted in terms of amplitudes:

The amplitude (density) for finding the particle at [itex]x[/itex] at time [itex]t[/itex] ([itex]\psi(x,t)[/itex] is the sum over all points [itex]x'[/itex] of the amplitude for finding the particle at [itex]x'[/itex] at time [itex]t[/itex] ([itex]\psi(x, t=0)[/itex]) times the amplitude for the particle to go from [itex]x'[/itex] at time [itex]t=0[/itex] to [itex]x[/itex] in time [itex]t[/itex] ([itex]G(x', x, t)[/itex].

Last edited:

- #5

- 575

- 166

thank you!

- #6

- 8

- 0

Share: